EVENTS CONVENT HIGH SCHOOL
10/08/2021 CLASS-7 SESSION2021-22(SLOT-1)
Maths
Chapter-1
INTEGERS EXERCISE 1.3
______________________________________
Question 1.Find each of the following products:
(a) 3 × (-1)
(b) (-1) × 225
(c) (-21) × (-30)
(d) (-316) × (-1)
(e) (-15) × 0 × (-18)
(f) (-12) × (-11) × (10)
(g) 9 × (-3) × (-6)
(h) (-18) × (-5) × (-4)
(i) (-1) ×(-2) × (-3) × 4
(j) (-3) × (-6) × (-2) × (-1)
Solution:
(a) 3 × (-1) = -3 × 1 = -3
(b) (-1) × 225 = -1 × 225 = -225
(c) (-21) × (-30) = (-) × (-) × 21 × 30
= 630
(d) (-316) × (-1) = (-) × (-) × 316 × 1
= 316
(e) (-15) × 0 × (-18) = 0 [∵ a × 0 = a]
(f) (-12) × (-11) × (10)
= (-) × (-) × 12 × 11 × 10 = 1320
(g) 9 × (-3) × (-6) = (-3) × (-6) × 9
= (—) × (-) × 3 × 6 × 9 = 162
(h) (-18) × (-5) × (-4)
= (-) × (-) × (-) × 18 × 5 × 4 = -360
(i) (-1) × (-2) × (-3) × 4
= (-) × (-) × (-) × 1 × 2 × 3 × 4 = -24
(j) (-3) × (-6) × (-2) × (-1)
= (-) × (-) × (-) × (-) × 3 × 6 × 2 × 1
= 36
Question 2.Verify the following:
(a) 18 × [7 + (-3)] = [18 × 7] + [18 ×
(-3)]
(b) (-21) × [(-4) + (-6)] = [(-21) ×
(-4)] + [(-21) × (-6)]
Solution:
(a) 18 × [7 + (-3)] = [18 × 7] + [18 ×
(-3)]
LHS = 18 × [7 + (-3)] = 18 × 4 = 72
RHS = [18 × 7] + [18 × (-3)] = 126 +
(-54)
= 126 – 54 = 72
LHS = RHS
Hence, verified.
(b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)]
LHS = (-21) × [(-4) + (-6)]
= (-21) × (-10)
= (-) × (-) × 21 × 10 = 210
RHS = [(-21) × (-4)] + [(-21) × (-6)]
= (84) + (126) = 84 + 126 = 210
LHS = RHS
Hence, verified.
Question 3.(i) For any integer a, what
is (-1) × a equal to?
(ii) Determine the integer whose product
with (-1) is 0.
(a) -22
(b) 37
(c) 0
Solution:
(i) (-1) × a = -a
(ii) (-1) × 0 = 0 [∵ a × 0 = 0]
Hence (c) 0 is the required integer.
(a) 26 × (-48) + (-48) × (-36)
(b) 8 × 53 × (-125)
(c) 15 × (-25) × (-4) × (-10)
(d) (-41) × 102
(e) 625 × (-35) + (-625) × 65
(f) 7 × (50 – 2)
(g) (-17) × (-29)
(h) (-57) × (-19) + 57
Solution:
(a) 26 × (-48) + (-48) × (-36)
= -48 × [26 + (-36)] = -48 × [26 – 36] =
-48 × -10 = 480 [Distributive property of multiplication over
addition]
(b) 8 × 53 × (-125) = 53 × [8 × (-125)]
[Associative property of multiplication]
= 53 × (-1000) = -53000
(c) 15 × (-25) × (-4) × (-10)
= [(-25) × (-4)] × [15 × (-10)]
[Regrouping the terms] = 100 × (-150) =
-15000
(d) (-41) × 102 = (-41) × [100 + 2]
= (-41) × 100 + (-41) × 2
[Distributive property of multiplication
over addition] = -4100 – 82 = -4182
(e) 625 × (-35) + (-625) × 65
= 625 × [(-35) + (-65)]
[Distributive property of multiplication
over addition]
= 625 × (-100) = -62500
(f) 7 × (50 – 2) = 7 × 48 = 336 or
7 × (50 – 2) = 7 × 50 -7 × 2 = 350 – 14
= 336 [Distributive property of multiplication over addition]
(g) (-17) × (-29) = (-17) × [30 + (-1)]
= (-17) × 30 + (-17) × (-1)
= -510 + 17 = -493
[Distributive property of multiplication
over addition]
(h) (-57) × (-19) + 57 = 57 × 19 + 57
= 57 × 19 + 57 × 1 [Y (-) × (-) = (+)]
[Distributive property of multiplication over addition]
= 57 × (19 + 1) = 57 × 20 = 1140
Solution:
Temperature of the room in the beginning
= 40°C
Temperature after 1 hour
= 40°C – 1 × 5°C = 40°C – 5°C – 35°C
Similarly, temperature of the room after
10 hours
= 40°C – 10 × 5°C = 40°C – 50°C = -10°C