Tuesday, August 10, 2021
Class-8 Subject-Maths Chapter-2 Exercise2.1 Linears Equations in one Varibale
EVENTS CONVENT HIGH SCHOOL
Class-7 Subject-Maths Chapter-1 Exercise1.3 INTEGERS
EVENTS CONVENT HIGH SCHOOL
10/08/2021 CLASS-7 SESSION2021-22(SLOT-1)
Maths
Chapter-1
INTEGERS EXERCISE 1.3
______________________________________
Question 1.Find each of the following products:
(a) 3 × (-1)
(b) (-1) × 225
(c) (-21) × (-30)
(d) (-316) × (-1)
(e) (-15) × 0 × (-18)
(f) (-12) × (-11) × (10)
(g) 9 × (-3) × (-6)
(h) (-18) × (-5) × (-4)
(i) (-1) ×(-2) × (-3) × 4
(j) (-3) × (-6) × (-2) × (-1)
Solution:
(a) 3 × (-1) = -3 × 1 = -3
(b) (-1) × 225 = -1 × 225 = -225
(c) (-21) × (-30) = (-) × (-) × 21 × 30
= 630
(d) (-316) × (-1) = (-) × (-) × 316 × 1
= 316
(e) (-15) × 0 × (-18) = 0 [∵ a × 0 = a]
(f) (-12) × (-11) × (10)
= (-) × (-) × 12 × 11 × 10 = 1320
(g) 9 × (-3) × (-6) = (-3) × (-6) × 9
= (—) × (-) × 3 × 6 × 9 = 162
(h) (-18) × (-5) × (-4)
= (-) × (-) × (-) × 18 × 5 × 4 = -360
(i) (-1) × (-2) × (-3) × 4
= (-) × (-) × (-) × 1 × 2 × 3 × 4 = -24
(j) (-3) × (-6) × (-2) × (-1)
= (-) × (-) × (-) × (-) × 3 × 6 × 2 × 1
= 36
Question 2.Verify the following:
(a) 18 × [7 + (-3)] = [18 × 7] + [18 ×
(-3)]
(b) (-21) × [(-4) + (-6)] = [(-21) ×
(-4)] + [(-21) × (-6)]
Solution:
(a) 18 × [7 + (-3)] = [18 × 7] + [18 ×
(-3)]
LHS = 18 × [7 + (-3)] = 18 × 4 = 72
RHS = [18 × 7] + [18 × (-3)] = 126 +
(-54)
= 126 – 54 = 72
LHS = RHS
Hence, verified.
(b) (-21) × [(-4) + (-6)] = [(-21) × (-4)] + [(-21) × (-6)]
LHS = (-21) × [(-4) + (-6)]
= (-21) × (-10)
= (-) × (-) × 21 × 10 = 210
RHS = [(-21) × (-4)] + [(-21) × (-6)]
= (84) + (126) = 84 + 126 = 210
LHS = RHS
Hence, verified.
Question 3.(i) For any integer a, what
is (-1) × a equal to?
(ii) Determine the integer whose product
with (-1) is 0.
(a) -22
(b) 37
(c) 0
Solution:
(i) (-1) × a = -a
(ii) (-1) × 0 = 0 [∵ a × 0 = 0]
Hence (c) 0 is the required integer.
(a) 26 × (-48) + (-48) × (-36)
(b) 8 × 53 × (-125)
(c) 15 × (-25) × (-4) × (-10)
(d) (-41) × 102
(e) 625 × (-35) + (-625) × 65
(f) 7 × (50 – 2)
(g) (-17) × (-29)
(h) (-57) × (-19) + 57
Solution:
(a) 26 × (-48) + (-48) × (-36)
= -48 × [26 + (-36)] = -48 × [26 – 36] =
-48 × -10 = 480 [Distributive property of multiplication over
addition]
(b) 8 × 53 × (-125) = 53 × [8 × (-125)]
[Associative property of multiplication]
= 53 × (-1000) = -53000
(c) 15 × (-25) × (-4) × (-10)
= [(-25) × (-4)] × [15 × (-10)]
[Regrouping the terms] = 100 × (-150) =
-15000
(d) (-41) × 102 = (-41) × [100 + 2]
= (-41) × 100 + (-41) × 2
[Distributive property of multiplication
over addition] = -4100 – 82 = -4182
(e) 625 × (-35) + (-625) × 65
= 625 × [(-35) + (-65)]
[Distributive property of multiplication
over addition]
= 625 × (-100) = -62500
(f) 7 × (50 – 2) = 7 × 48 = 336 or
7 × (50 – 2) = 7 × 50 -7 × 2 = 350 – 14
= 336 [Distributive property of multiplication over addition]
(g) (-17) × (-29) = (-17) × [30 + (-1)]
= (-17) × 30 + (-17) × (-1)
= -510 + 17 = -493
[Distributive property of multiplication
over addition]
(h) (-57) × (-19) + 57 = 57 × 19 + 57
= 57 × 19 + 57 × 1 [Y (-) × (-) = (+)]
[Distributive property of multiplication over addition]
= 57 × (19 + 1) = 57 × 20 = 1140
Solution:
Temperature of the room in the beginning
= 40°C
Temperature after 1 hour
= 40°C – 1 × 5°C = 40°C – 5°C – 35°C
Similarly, temperature of the room after
10 hours
= 40°C – 10 × 5°C = 40°C – 50°C = -10°C
Class-6 Subject-Maths Chapter-1 Exercise1.3 Knowing our Numbers
EVENTS CONVENT HIGH SCHOOL
10/08/2021 CLASS-6 SESSION2021-22(SLOT-1)
Maths
Chapter-1
Knowing our Numbers
______________________________________
QUESTION-1 EXPLANATION
Question 1.Estimate each of the following using general rule:
(a) 730 + 998
(b) 796 – 314
(c) 12,904 + 2,888
(d) 28,292 – 21,496
Make ten more such examples of addition, subtraction and estimation of their outcome.
Solution:
(a) 730 + 998
Rounding off 730 nearest to hundreds = 700
Rounding off 998 nearest to hundreds = 1,000
∴
730 + 998 = 700 + 1000 = 1700
(b) 796 – 314
Rounding off 796 nearest to hundreds = 800
Rounding off 314 nearest to hundreds = 300
∴ 796 – 314 = 800 – 300 = 500
(c) 12,904 + 2,888
Rounding off 12,904 nearest to thousands = 13000
Rounding off 2888 nearest to thousands = 3000
∴ 12,904 + 2,888 = 13000 + 3000 = 16000
(d) 28,292 – 21,496
Rounding off 28,292 nearest to thousands = 28,000
Rounding off 21,496 nearest to thousands = 21,000
∴ 28,292 – 21,496 = 28,000 – 21,000 = 7,000
Example 1: 1210 + 2365 = 1200 + 2400 = 3600
Example 2: 3853 + 6524 = 4000 + 7000 = 11,000
Example 3: 8752 – 3654 = 9,000 – 4,000 = 5,000
Example 4: 4538 – 2965 = 5,000 – 3,000 = 2,000
Example 5: 1927 + 3185 = 2000 + 3,000 = 5,000
Example 6: 3258 – 1698 = 3000 – 2000 = 1,000
Example 7: 8735 + 6232 = 9000 + 6000 = 15,000
Example 8: 1038 – 1028 = 1000 – 1000 = 0
Example 9: 6352 + 5830 = 6,000 + 6,000 = 12,000
Example 10: 9854 – 6385 = 10,000 – 6000 = 4,000
QUESTION-2 EXPLANATION
(a) 439 + 334 + 4,317
(b) 1,08,734-47,599
(c) 8,325-491
(d) 4,89,348-48,365
Make four such examples:
Solution:
(a)439 + 334 + 4,317
(i) Rough estimate (Rounding off to nearest hundreds)
439 + 334 + 4,317 = 400 + 300 + 4300 = 5,000
(ii) Closer estimate (Rounding off to nearest tens)
439 + 334 + 4317 = 440 + 330 + 4320 = 5090.
(b) 1,08,734 – 47,599
(i) Rough estimate (Rounding off to nearest hundreds)
1,08,734 – 47,599 = 1,08,700 – 47,600 = 61,100
(ii) Closer estimate (Rounding off to nearest tens)
1,08,734 – 47,599 = 1,08,730 – 47,600 = 61,130.
(c) 8325 – 491
(i) Rough estimate (Rounding off to nearest hundreds)
8325 – 491 = 8300 – 500 = 7800
(ii) Closer estimate (Rounding off to nearest tens)
8325 – 491 = 8330 – 490 = 7840.
(d) 4,89,348 – 48,365
(i) Rough estimate (Rounding off to nearest hundreds)
4,89,348 – 48,365 = 4,89,300 – 48,400 = 4,40,900
(ii) Closer estimate (Rounding off to nearest tens)
4,89,348 – 48,365 = 4,89,350 – 48,370 = 4,40,980
Example 1:384 + 562
Solution:(i) Rough estimate (Rounding off to nearest hundreds)
384 + 562 = 400 + 600
= 1,000
(ii) Closer estimate (Rounding off to nearest tens)
384 + 562 = 380 + 560
= 940
Example 2:8765 – 3820
Solution:(i) Rough estimate (Rounding off to nearest hundreds)
8765 – 3820 = 8800 – 3900
= 4900
(ii) Closer estimate (Rounding off to nearest tens)
8765 – 3820 = 8770 – 3820
= 4950
Example 3:6653 – 8265
Solution:(i) Rough estimate (Rounding off to nearest hundreds)
6653 + 8265 = 6700 + 8300
= 15,000
(ii) Closer estimate (Rounding off to nearest tens)
6653 + 8265 = 6650 + 8270
= 14920
Example 4:3826 – 1262
Solution:(i) Rough estimate (Rounding off to nearest hundreds)
3826 – 1262 = 3800 – 1300
= 2500
(ii) Closer estimate (Rounding off to nearest tens)
3826 – 1262 = 3830 – 1260
= 2570
QUESTION-3 EXPLANATION
(a) 578 x 161
(b)5281 x 3491
(c) 1291 x 592
(d) 9250 x 29
Solution:
(a) 578 x 161 = 600 x 200 = 1,20,000
(b) 5281 x 3491 = 5000 x 3000 = 1,50,00,000
(c) 1291 x 592 = 1300 x 600 = 7,80,000
(d) 9250 x 29 = 9000 x 30 = 2,70,000